Specification of Thermoelectric Module

TEC1-031035

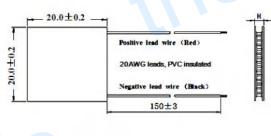
Description

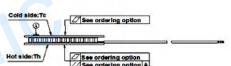
The 31 couples, 20 mm × 20 mm size single module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application


- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems


Performance Specification Sheet

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	3.81	4.11	Voltage applied to the module at DT _{max}	
I _{max(} amps)	3.8	3.8	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	9.5	10.2	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	0.76	0.82	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder: B. Sealant:

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C) 2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240°C) 3. EPS: Epoxy sealant

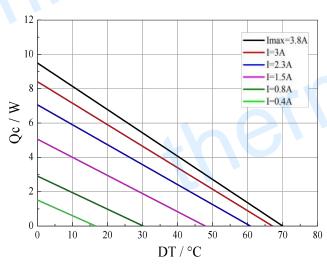
C. Ceramics:

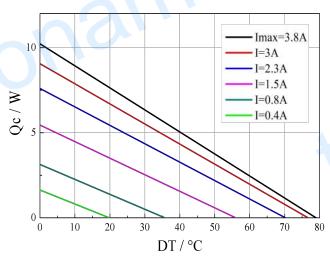
D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%) 1. Blank ceramics (not metalized)

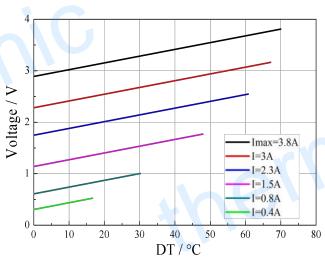
2. Aluminum Nitride (AlN) 2. Metalized

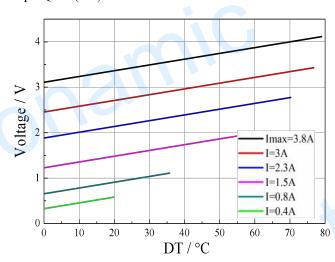
Ordering Option

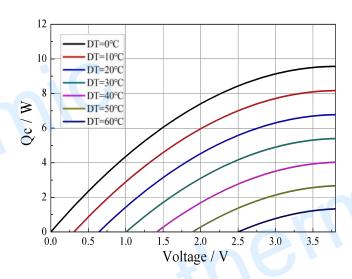

Suffix	Thickness H (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length		
TF	$0:4.7 \pm 0.1$	0: 0.05/0.05	150±3/Specify		
TF	$1:4.7 \pm 0.03$	1: 0.02/0.02	150±3/Specify		
Eg. TF01: Thickness 4.7 ± 0.1 (mm) and Flatness $0.02/0.02$ (mm)					

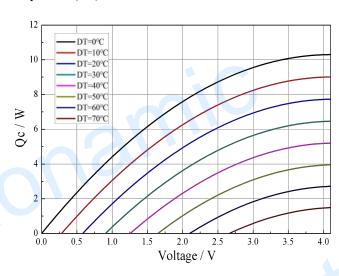

Specification of Thermoelectric Module

TEC1-031035


Performance Curves at Th=27 °C

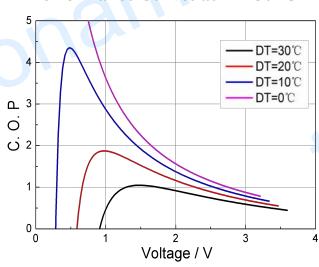

Performance Curves at Th=50 °C



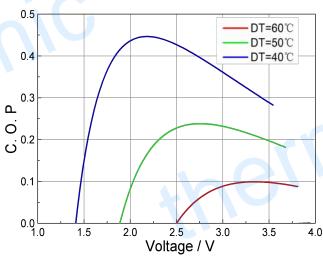

Standard Performance Graph Qc= f(DT)

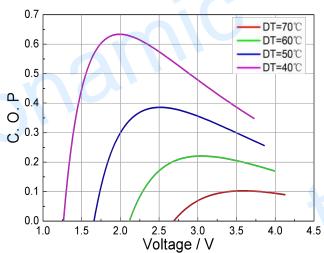
Standard Performance Graph $V = f(\Delta T)$

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-031035


Performance Curves at Th=27 °C


DT=30°C DT=20°C DT=10°C DT=0°C DT=0°C Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.